The cumulative function of the noncentral chi-square function has a form of the Marcum Q-function
\begin{equation*}
1-{{Q}_{\tfrac{k}{2}}}\left( \sqrt{\lambda },\sqrt{x} \right),
\end{equation*}
where $k>0$ (degree of freedom), $\lambda >0$ (noncentrailty parameter), and $x\in \left[ 0,\infty \right)$.
The Marcum Q-function (Nuttall, 1975) is defined as
\begin{equation*}
{{Q}_{M}}\left( a,b \right)={{\int_{b}^{\infty }{x\left( \frac{x}{a} \right)}}^{M-1}}\exp \left( \frac{-\left( {{x}^{2}}+{{a}^{2}}
\right)}{2} \right){{I}_{M-1}}\left( ax \right)dx,
\end{equation*}
where ${{I}_{M-1}}\left( ax \right)$ is the modified Bessel function of the first kind of ($M-1$)th order, and it is defined as
\begin{equation*}
{{I}_{M-1}}\left( ax \right)=\frac{1}{\Gamma \left( M \right)}{{\left( \frac{ax}{2}
\right)}^{M-1}}\sum\limits_{i=0}^{\infty}{\frac{1}{i!\prod\limits_{j=1}^{i}{\left( M-1+j \right)}}}{{\left( \frac{ax}{2} \right)}^{2i}}.
\end{equation*}
With some manipulations, we can simplify the Marcum Q-function into an "$h$" function
\begin{equation*}
{{Q}_{M}}\left(a,b\right)=\frac{\exp\left(\frac{-{{a}^{2}}}{2} \right)}{{{2}^{M}}\Gamma\left(M\right)}\sum\limits_{i=0}^{\infty}{{{\left(
\frac{a}{2} \right)}^{2i}}}\frac{{{C}^{M+i}}{\exp({\tfrac{-C}{2}})}h_{M-1+i}^{\tfrac{-C}{2}}-{{b}^{2\left(M+i
\right)}}{\exp({\tfrac{-{{b}^{2}}}{2}})}h_{M-1+i}^{\tfrac{-{{b}^{2}}}{2}}}{i!\prod\limits_{j=1}^{i}{\left( M-1+j \right)}}. \tag{4.12}
\end{equation*}
[Proof for (4.12)]
In addition, the Marcum Q-function also applies to the cumulative distribution function of the Rice distribution as shown in the supplementary material.